navlie

  • Home
  • Tutorial
  • API
  • navlie.composite
    • navlie.composite.CompositeInput
    • navlie.composite.CompositeMeasurement
    • navlie.composite.CompositeMeasurementModel
    • navlie.composite.CompositeProcessModel
    • navlie.composite.CompositeState
  • navlie.datagen
    • navlie.datagen.generate_measurement
    • navlie.datagen.DataGenerator
  • navlie.filters
    • navlie.filters.check_outlier
    • navlie.filters.generate_sigmapoints
    • navlie.filters.mean_state
    • navlie.filters.run_filter
    • navlie.filters.run_gsf_filter
    • navlie.filters.run_imm_filter
    • navlie.filters.CubatureKalmanFilter
    • navlie.filters.ExtendedKalmanFilter
    • navlie.filters.GaussHermiteKalmanFilter
    • navlie.filters.GaussianSumFilter
    • navlie.filters.InteractingModelFilter
    • navlie.filters.IteratedKalmanFilter
    • navlie.filters.SigmaPointKalmanFilter
    • navlie.filters.UnscentedKalmanFilter
  • navlie.types
    • navlie.types.Dataset
    • navlie.types.Input
    • navlie.types.Measurement
    • navlie.types.MeasurementModel
    • navlie.types.ProcessModel
    • navlie.types.State
    • navlie.types.StateWithCovariance
  • navlie.utils
    • navlie.utils.alignment
      • navlie.utils.alignment.associate_and_align_trajectories
      • navlie.utils.alignment.evo_traj_to_state_list
      • navlie.utils.alignment.state_list_to_evo_traj
    • navlie.utils.common
      • navlie.utils.common.associate_stamps
      • navlie.utils.common.find_nearest_stamp_idx
      • navlie.utils.common.jacobian
      • navlie.utils.common.load_tum_trajectory
      • navlie.utils.common.monte_carlo
      • navlie.utils.common.randvec
      • navlie.utils.common.schedule_sequential_measurements
      • navlie.utils.common.state_interp
      • navlie.utils.common.van_loans
      • navlie.utils.common.GaussianResult
      • navlie.utils.common.GaussianResultList
      • navlie.utils.common.MixtureResult
      • navlie.utils.common.MixtureResultList
      • navlie.utils.common.MonteCarloResult
    • navlie.utils.mixture
      • navlie.utils.mixture.gaussian_mixing
      • navlie.utils.mixture.gaussian_mixing_vectorspace
      • navlie.utils.mixture.reparametrize_gaussians_about_X_par
      • navlie.utils.mixture.update_X
    • navlie.utils.plot
      • navlie.utils.plot.plot_camera_poses
      • navlie.utils.plot.plot_error
      • navlie.utils.plot.plot_meas
      • navlie.utils.plot.plot_meas_by_model
      • navlie.utils.plot.plot_nees
      • navlie.utils.plot.plot_poses
      • navlie.utils.plot.set_axes_equal
      • navlie.utils.plot.CameraPoseVisualizer
  • navlie.batch
    • navlie.batch.estimator
      • navlie.batch.estimator.BatchEstimator
    • navlie.batch.gaussian_mixtures
      • navlie.batch.gaussian_mixtures.GaussianMixtureResidual
      • navlie.batch.gaussian_mixtures.HessianSumMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxSumMixtureResidual
      • navlie.batch.gaussian_mixtures.SumMixtureResidual
    • navlie.batch.losses
      • navlie.batch.losses.CauchyLoss
      • navlie.batch.losses.L2Loss
      • navlie.batch.losses.LossFunction
    • navlie.batch.problem
      • navlie.batch.problem.OptimizationSummary
      • navlie.batch.problem.Problem
    • navlie.batch.residuals
      • navlie.batch.residuals.MeasurementResidual
      • navlie.batch.residuals.PriorResidual
      • navlie.batch.residuals.ProcessResidual
      • navlie.batch.residuals.Residual
  • navlie.lib
    • navlie.lib.camera
      • navlie.lib.camera.PinholeCamera
      • navlie.lib.camera.PoseMatrix
    • navlie.lib.datasets
      • navlie.lib.datasets.generate_landmark_positions
      • navlie.lib.datasets.SimulatedInertialGPSDataset
      • navlie.lib.datasets.SimulatedInertialLandmarkDataset
      • navlie.lib.datasets.SimulatedPoseRangingDataset
    • navlie.lib.imu
      • navlie.lib.imu.G_matrix
      • navlie.lib.imu.G_matrix_inv
      • navlie.lib.imu.L_matrix
      • navlie.lib.imu.M_matrix
      • navlie.lib.imu.N_matrix
      • navlie.lib.imu.U_matrix
      • navlie.lib.imu.U_matrix_inv
      • navlie.lib.imu.U_tilde_matrix
      • navlie.lib.imu.adjoint_IE3
      • navlie.lib.imu.delta_matrix
      • navlie.lib.imu.get_unbiased_imu
      • navlie.lib.imu.inverse_IE3
      • navlie.lib.imu.IMU
      • navlie.lib.imu.IMUKinematics
      • navlie.lib.imu.IMUState
    • navlie.lib.models
      • navlie.lib.models.AbsolutePosition
      • navlie.lib.models.AbsoluteVelocity
      • navlie.lib.models.Altitude
      • navlie.lib.models.BodyFrameVelocity
      • navlie.lib.models.CameraProjection
      • navlie.lib.models.DoubleIntegrator
      • navlie.lib.models.DoubleIntegratorWithBias
      • navlie.lib.models.GlobalPosition
      • navlie.lib.models.Gravitometer
      • navlie.lib.models.InvariantMeasurement
      • navlie.lib.models.InvariantPointRelativePosition
      • navlie.lib.models.LinearMeasurement
      • navlie.lib.models.Magnetometer
      • navlie.lib.models.OneDimensionalPositionVelocityRange
      • navlie.lib.models.PointRelativePosition
      • navlie.lib.models.PointRelativePositionSLAM
      • navlie.lib.models.RangePointToAnchor
      • navlie.lib.models.RangePoseToAnchor
      • navlie.lib.models.RangePoseToPose
      • navlie.lib.models.RangeRelativePose
      • navlie.lib.models.RelativeBodyFrameVelocity
      • navlie.lib.models.SingleIntegrator
    • navlie.lib.preintegration
      • navlie.lib.preintegration.AngularVelocityIncrement
      • navlie.lib.preintegration.BodyVelocityIncrement
      • navlie.lib.preintegration.IMUIncrement
      • navlie.lib.preintegration.LinearIncrement
      • navlie.lib.preintegration.PreintegratedAngularVelocity
      • navlie.lib.preintegration.PreintegratedBodyVelocity
      • navlie.lib.preintegration.PreintegratedIMUKinematics
      • navlie.lib.preintegration.PreintegratedLinearModel
      • navlie.lib.preintegration.PreintegratedWheelOdometry
      • navlie.lib.preintegration.RelativeMotionIncrement
      • navlie.lib.preintegration.WheelOdometryIncrement
    • navlie.lib.states
      • navlie.lib.states.MatrixLieGroupState
      • navlie.lib.states.MixtureState
      • navlie.lib.states.SE23State
      • navlie.lib.states.SE2State
      • navlie.lib.states.SE3State
      • navlie.lib.states.SL3State
      • navlie.lib.states.SO2State
      • navlie.lib.states.SO3State
      • navlie.lib.states.StampedValue
      • navlie.lib.states.VectorInput
      • navlie.lib.states.VectorState
  • navlie.bspline
    • navlie.bspline.SE3Bspline
On this page
  • MonteCarloResult
    • MonteCarloResult.trial_results
    • MonteCarloResult.num_trials
    • MonteCarloResult.stamp
    • MonteCarloResult.average_nees
    • MonteCarloResult.average_ees
    • MonteCarloResult.rmse
    • MonteCarloResult.total_rmse
    • MonteCarloResult.expected_nees
    • MonteCarloResult.dof
    • MonteCarloResult.nees_lower_bound()
    • MonteCarloResult.nees_upper_bound()

navlie.utils.common.MonteCarloResult¶

class navlie.utils.common.MonteCarloResult(trial_results: List[GaussianResultList])¶

Bases: object

A data container which computes various interesting metrics associated with Monte Carlo experiments, such as the average estimation error squared (EES) and the average normalized EES.

Parameters:

trial_results (List[GaussianResultList]) – Each GaussianResultList corresponds to a trial. This object assumes that the timestamps in each trial are identical.

Let N denote the number of time steps in a trial.

trial_results¶

raw trial results

Type:

List[GaussianResultList]

num_trials¶

number of trials

Type:

int

stamp¶

timestamps throughout trajectory

Type:

numpy.ndarray with shape (N,)

average_nees: ndarray¶

average NEES throughout trajectory

Type:

numpy.ndarray with shape (N,)

average_ees: ndarray¶

average EES throughout trajectory

Type:

numpy.ndarray with shape (N,)

rmse: ndarray¶

root-mean-squared error of each component

Type:

numpy.ndarray with shape (N,dof)

total_rmse: ndarray¶

Total RMSE, this can be meaningless if units differ in a state

Type:

numpy.ndarray with shape (N,)

expected_nees: ndarray¶

expected NEES value throughout trajectory

Type:

numpy.ndarray with shape (N,1)

dof: ndarray¶

dof throughout trajectory

Type:

numpy.ndarray with shape (N)

nees_lower_bound(confidence_interval: float)¶

Calculates the NEES lower bound throughout the trajectory.

Parameters:

confidence_interval (float) – Single-sided cumulative probability threshold that defines the bound. Must be between 0 and 1

Returns:

NEES value corresponding to confidence interval

Return type:

numpy.ndarray with shape (N,)

nees_upper_bound(confidence_interval: float, double_sided=True)¶

Calculates the NEES upper bound throughout the trajectory

Parameters:
  • confidence_interval (float) – Cumulative probability threshold that defines the bound. Must be between 0 and 1.

  • double_sided (bool, optional) – Whether the provided threshold is single-sided or double sided, by default True

Returns:

NEES value corresponding to confidence interval

Return type:

numpy.ndarray with shape (N,)

previous

navlie.utils.common.MixtureResultList

next

navlie.utils.mixture

© Copyright 2022.

Created using Sphinx 7.1.2.