navlie

  • Home
  • Tutorial
  • API
  • navlie.composite
    • navlie.composite.CompositeInput
    • navlie.composite.CompositeMeasurement
    • navlie.composite.CompositeMeasurementModel
    • navlie.composite.CompositeProcessModel
    • navlie.composite.CompositeState
  • navlie.datagen
    • navlie.datagen.generate_measurement
    • navlie.datagen.DataGenerator
  • navlie.filters
    • navlie.filters.check_outlier
    • navlie.filters.generate_sigmapoints
    • navlie.filters.mean_state
    • navlie.filters.run_filter
    • navlie.filters.run_gsf_filter
    • navlie.filters.run_imm_filter
    • navlie.filters.CubatureKalmanFilter
    • navlie.filters.ExtendedKalmanFilter
    • navlie.filters.GaussHermiteKalmanFilter
    • navlie.filters.GaussianSumFilter
    • navlie.filters.InteractingModelFilter
    • navlie.filters.IteratedKalmanFilter
    • navlie.filters.SigmaPointKalmanFilter
    • navlie.filters.UnscentedKalmanFilter
  • navlie.types
    • navlie.types.Dataset
    • navlie.types.Input
    • navlie.types.Measurement
    • navlie.types.MeasurementModel
    • navlie.types.ProcessModel
    • navlie.types.State
    • navlie.types.StateWithCovariance
  • navlie.utils
    • navlie.utils.alignment
      • navlie.utils.alignment.associate_and_align_trajectories
      • navlie.utils.alignment.evo_traj_to_state_list
      • navlie.utils.alignment.state_list_to_evo_traj
    • navlie.utils.common
      • navlie.utils.common.associate_stamps
      • navlie.utils.common.find_nearest_stamp_idx
      • navlie.utils.common.jacobian
      • navlie.utils.common.load_tum_trajectory
      • navlie.utils.common.monte_carlo
      • navlie.utils.common.randvec
      • navlie.utils.common.schedule_sequential_measurements
      • navlie.utils.common.state_interp
      • navlie.utils.common.van_loans
      • navlie.utils.common.GaussianResult
      • navlie.utils.common.GaussianResultList
      • navlie.utils.common.MixtureResult
      • navlie.utils.common.MixtureResultList
      • navlie.utils.common.MonteCarloResult
    • navlie.utils.mixture
      • navlie.utils.mixture.gaussian_mixing
      • navlie.utils.mixture.gaussian_mixing_vectorspace
      • navlie.utils.mixture.reparametrize_gaussians_about_X_par
      • navlie.utils.mixture.update_X
    • navlie.utils.plot
      • navlie.utils.plot.plot_camera_poses
      • navlie.utils.plot.plot_error
      • navlie.utils.plot.plot_meas
      • navlie.utils.plot.plot_meas_by_model
      • navlie.utils.plot.plot_nees
      • navlie.utils.plot.plot_poses
      • navlie.utils.plot.set_axes_equal
      • navlie.utils.plot.CameraPoseVisualizer
  • navlie.batch
    • navlie.batch.estimator
      • navlie.batch.estimator.BatchEstimator
    • navlie.batch.gaussian_mixtures
      • navlie.batch.gaussian_mixtures.GaussianMixtureResidual
      • navlie.batch.gaussian_mixtures.HessianSumMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxSumMixtureResidual
      • navlie.batch.gaussian_mixtures.SumMixtureResidual
    • navlie.batch.losses
      • navlie.batch.losses.CauchyLoss
      • navlie.batch.losses.L2Loss
      • navlie.batch.losses.LossFunction
    • navlie.batch.problem
      • navlie.batch.problem.OptimizationSummary
      • navlie.batch.problem.Problem
    • navlie.batch.residuals
      • navlie.batch.residuals.MeasurementResidual
      • navlie.batch.residuals.PriorResidual
      • navlie.batch.residuals.ProcessResidual
      • navlie.batch.residuals.Residual
  • navlie.lib
    • navlie.lib.camera
      • navlie.lib.camera.PinholeCamera
      • navlie.lib.camera.PoseMatrix
    • navlie.lib.datasets
      • navlie.lib.datasets.generate_landmark_positions
      • navlie.lib.datasets.SimulatedInertialGPSDataset
      • navlie.lib.datasets.SimulatedInertialLandmarkDataset
      • navlie.lib.datasets.SimulatedPoseRangingDataset
    • navlie.lib.imu
      • navlie.lib.imu.G_matrix
      • navlie.lib.imu.G_matrix_inv
      • navlie.lib.imu.L_matrix
      • navlie.lib.imu.M_matrix
      • navlie.lib.imu.N_matrix
      • navlie.lib.imu.U_matrix
      • navlie.lib.imu.U_matrix_inv
      • navlie.lib.imu.U_tilde_matrix
      • navlie.lib.imu.adjoint_IE3
      • navlie.lib.imu.delta_matrix
      • navlie.lib.imu.get_unbiased_imu
      • navlie.lib.imu.inverse_IE3
      • navlie.lib.imu.IMU
      • navlie.lib.imu.IMUKinematics
      • navlie.lib.imu.IMUState
    • navlie.lib.models
      • navlie.lib.models.AbsolutePosition
      • navlie.lib.models.AbsoluteVelocity
      • navlie.lib.models.Altitude
      • navlie.lib.models.BodyFrameVelocity
      • navlie.lib.models.CameraProjection
      • navlie.lib.models.DoubleIntegrator
      • navlie.lib.models.DoubleIntegratorWithBias
      • navlie.lib.models.GlobalPosition
      • navlie.lib.models.Gravitometer
      • navlie.lib.models.InvariantMeasurement
      • navlie.lib.models.InvariantPointRelativePosition
      • navlie.lib.models.LinearMeasurement
      • navlie.lib.models.Magnetometer
      • navlie.lib.models.OneDimensionalPositionVelocityRange
      • navlie.lib.models.PointRelativePosition
      • navlie.lib.models.PointRelativePositionSLAM
      • navlie.lib.models.RangePointToAnchor
      • navlie.lib.models.RangePoseToAnchor
      • navlie.lib.models.RangePoseToPose
      • navlie.lib.models.RangeRelativePose
      • navlie.lib.models.RelativeBodyFrameVelocity
      • navlie.lib.models.SingleIntegrator
    • navlie.lib.preintegration
      • navlie.lib.preintegration.AngularVelocityIncrement
      • navlie.lib.preintegration.BodyVelocityIncrement
      • navlie.lib.preintegration.IMUIncrement
      • navlie.lib.preintegration.LinearIncrement
      • navlie.lib.preintegration.PreintegratedAngularVelocity
      • navlie.lib.preintegration.PreintegratedBodyVelocity
      • navlie.lib.preintegration.PreintegratedIMUKinematics
      • navlie.lib.preintegration.PreintegratedLinearModel
      • navlie.lib.preintegration.PreintegratedWheelOdometry
      • navlie.lib.preintegration.RelativeMotionIncrement
      • navlie.lib.preintegration.WheelOdometryIncrement
    • navlie.lib.states
      • navlie.lib.states.MatrixLieGroupState
      • navlie.lib.states.MixtureState
      • navlie.lib.states.SE23State
      • navlie.lib.states.SE2State
      • navlie.lib.states.SE3State
      • navlie.lib.states.SL3State
      • navlie.lib.states.SO2State
      • navlie.lib.states.SO3State
      • navlie.lib.states.StampedValue
      • navlie.lib.states.VectorInput
      • navlie.lib.states.VectorState
  • navlie.bspline
    • navlie.bspline.SE3Bspline
On this page
  • MixtureResultList
    • MixtureResultList.model_probabilities
    • MixtureResultList.from_estimates()
    • MixtureResultList.stamp
    • MixtureResultList.state
    • MixtureResultList.state_true
    • MixtureResultList.covariance
    • MixtureResultList.error
    • MixtureResultList.ees
    • MixtureResultList.nees
    • MixtureResultList.md
    • MixtureResultList.three_sigma
    • MixtureResultList.value
    • MixtureResultList.value_true
    • MixtureResultList.dof
    • MixtureResultList.nees_lower_bound()
    • MixtureResultList.nees_upper_bound()
    • MixtureResultList.rmse

navlie.utils.common.MixtureResultList¶

class navlie.utils.common.MixtureResultList(result_list: List[MixtureResult])¶

Bases: GaussianResultList

Parameters:

result_list (List[GaussianResult]) – A list of GaussianResult, intended such that each element corresponds to a different time point

Let N = len(result_list)

model_probabilities¶
static from_estimates(estimate_list: List[MixtureState], state_true_list: List[State], method='nearest')¶

A convenience function that creates a MixtureResultList from a list of MixtureState and a list of true State objects

Parameters:
  • estimate_list (List[MixtureState]) – A list of MixtureState objects

  • state_true_list (List[State]) – A list of true State objects

  • method ("nearest" or "linear", optional) – The method used to interpolate the true state when the timestamps do not line up exactly, by default “nearest”.

Returns:

A MixtureResultList object

Return type:

MixtureResultList

stamp¶

timestamp

Type:

numpy.ndarray with shape (N,)

state: List[State]¶

numpy array of State objects

Type:

numpy.ndarray with shape (N,)

state_true: List[State]¶

numpy array of true State objects

Type:

numpy.ndarray with shape (N,)

covariance: ndarray¶

covariance

Type:

numpy.ndarray with shape (N,dof,dof)

error¶

error throughout trajectory

Type:

numpy.ndarray with shape (N, dof)

ees¶

EES throughout trajectory

Type:

numpy.ndarray with shape (N,)

nees¶

NEES throughout trajectory

Type:

numpy.ndarray with shape (N,)

md¶

Mahalanobis distance throughout trajectory

Type:

numpy.ndarray with shape (N,)

three_sigma¶

three-sigma bounds

Type:

numpy.ndarray with shape (N, dof)

value¶

state value. type depends on implementation

Type:

numpy.ndarray with shape (N,)

value_true¶

true state value. type depends on implementation

Type:

numpy.ndarray with shape (N,)

dof¶

dof throughout trajectory

Type:

numpy.ndarray with shape (N,)

nees_lower_bound(confidence_interval: float)¶

Calculates the NEES lower bound throughout the trajectory.

Parameters:

confidence_interval (float) – Single-sided cumulative probability threshold that defines the bound. Must be between 0 and 1

Returns:

NEES value corresponding to confidence interval

Return type:

numpy.ndarray with shape (N,)

An example of how to make a NEES plot with both upper and lower bounds:

ax.plot(results.stamp, results.nees)
ax.plot(results.stamp, results.nees_lower_bound(0.99))
ax.plot(results.stamp, results.nees_upper_bound(0.99))
nees_upper_bound(confidence_interval: float, double_sided=True)¶

Calculates the NEES upper bound throughout the trajectory

Parameters:
  • confidence_interval (float) – Cumulative probability threshold that defines the bound. Must be between 0 and 1.

  • double_sided (bool, optional) – Whether the provided threshold is single-sided or double sided, by default True

Returns:

  • numpy.ndarray with shape (N,) – NEES value corresponding to confidence interval

  • An example of how to make a NEES plot with only upper bounds

  • .. code-block:: python – ax.plot(results.stamp, results.nees) ax.plot(results.stamp, results.nees_upper_bound(0.99, double_sided=False))

rmse¶

EES throughout trajectory

Type:

numpy.ndarray with shape (N,)

previous

navlie.utils.common.MixtureResult

next

navlie.utils.common.MonteCarloResult

© Copyright 2022.

Created using Sphinx 7.1.2.