navlie

  • Home
  • Tutorial
  • API
  • navlie.composite
    • navlie.composite.CompositeInput
    • navlie.composite.CompositeMeasurement
    • navlie.composite.CompositeMeasurementModel
    • navlie.composite.CompositeProcessModel
    • navlie.composite.CompositeState
  • navlie.datagen
    • navlie.datagen.generate_measurement
    • navlie.datagen.DataGenerator
  • navlie.filters
    • navlie.filters.check_outlier
    • navlie.filters.generate_sigmapoints
    • navlie.filters.mean_state
    • navlie.filters.run_filter
    • navlie.filters.run_gsf_filter
    • navlie.filters.run_imm_filter
    • navlie.filters.CubatureKalmanFilter
    • navlie.filters.ExtendedKalmanFilter
    • navlie.filters.GaussHermiteKalmanFilter
    • navlie.filters.GaussianSumFilter
    • navlie.filters.InteractingModelFilter
    • navlie.filters.IteratedKalmanFilter
    • navlie.filters.SigmaPointKalmanFilter
    • navlie.filters.UnscentedKalmanFilter
  • navlie.types
    • navlie.types.Dataset
    • navlie.types.Input
    • navlie.types.Measurement
    • navlie.types.MeasurementModel
    • navlie.types.ProcessModel
    • navlie.types.State
    • navlie.types.StateWithCovariance
  • navlie.utils
    • navlie.utils.alignment
      • navlie.utils.alignment.associate_and_align_trajectories
      • navlie.utils.alignment.evo_traj_to_state_list
      • navlie.utils.alignment.state_list_to_evo_traj
    • navlie.utils.common
      • navlie.utils.common.associate_stamps
      • navlie.utils.common.find_nearest_stamp_idx
      • navlie.utils.common.jacobian
      • navlie.utils.common.load_tum_trajectory
      • navlie.utils.common.monte_carlo
      • navlie.utils.common.randvec
      • navlie.utils.common.schedule_sequential_measurements
      • navlie.utils.common.state_interp
      • navlie.utils.common.van_loans
      • navlie.utils.common.GaussianResult
      • navlie.utils.common.GaussianResultList
      • navlie.utils.common.MixtureResult
      • navlie.utils.common.MixtureResultList
      • navlie.utils.common.MonteCarloResult
    • navlie.utils.mixture
      • navlie.utils.mixture.gaussian_mixing
      • navlie.utils.mixture.gaussian_mixing_vectorspace
      • navlie.utils.mixture.reparametrize_gaussians_about_X_par
      • navlie.utils.mixture.update_X
    • navlie.utils.plot
      • navlie.utils.plot.plot_camera_poses
      • navlie.utils.plot.plot_error
      • navlie.utils.plot.plot_meas
      • navlie.utils.plot.plot_meas_by_model
      • navlie.utils.plot.plot_nees
      • navlie.utils.plot.plot_poses
      • navlie.utils.plot.set_axes_equal
      • navlie.utils.plot.CameraPoseVisualizer
  • navlie.batch
    • navlie.batch.estimator
      • navlie.batch.estimator.BatchEstimator
    • navlie.batch.gaussian_mixtures
      • navlie.batch.gaussian_mixtures.GaussianMixtureResidual
      • navlie.batch.gaussian_mixtures.HessianSumMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxMixtureResidual
      • navlie.batch.gaussian_mixtures.MaxSumMixtureResidual
      • navlie.batch.gaussian_mixtures.SumMixtureResidual
    • navlie.batch.losses
      • navlie.batch.losses.CauchyLoss
      • navlie.batch.losses.L2Loss
      • navlie.batch.losses.LossFunction
    • navlie.batch.problem
      • navlie.batch.problem.OptimizationSummary
      • navlie.batch.problem.Problem
    • navlie.batch.residuals
      • navlie.batch.residuals.MeasurementResidual
      • navlie.batch.residuals.PriorResidual
      • navlie.batch.residuals.ProcessResidual
      • navlie.batch.residuals.Residual
  • navlie.lib
    • navlie.lib.camera
      • navlie.lib.camera.PinholeCamera
      • navlie.lib.camera.PoseMatrix
    • navlie.lib.datasets
      • navlie.lib.datasets.generate_landmark_positions
      • navlie.lib.datasets.SimulatedInertialGPSDataset
      • navlie.lib.datasets.SimulatedInertialLandmarkDataset
      • navlie.lib.datasets.SimulatedPoseRangingDataset
    • navlie.lib.imu
      • navlie.lib.imu.G_matrix
      • navlie.lib.imu.G_matrix_inv
      • navlie.lib.imu.L_matrix
      • navlie.lib.imu.M_matrix
      • navlie.lib.imu.N_matrix
      • navlie.lib.imu.U_matrix
      • navlie.lib.imu.U_matrix_inv
      • navlie.lib.imu.U_tilde_matrix
      • navlie.lib.imu.adjoint_IE3
      • navlie.lib.imu.delta_matrix
      • navlie.lib.imu.get_unbiased_imu
      • navlie.lib.imu.inverse_IE3
      • navlie.lib.imu.IMU
      • navlie.lib.imu.IMUKinematics
      • navlie.lib.imu.IMUState
    • navlie.lib.models
      • navlie.lib.models.AbsolutePosition
      • navlie.lib.models.AbsoluteVelocity
      • navlie.lib.models.Altitude
      • navlie.lib.models.BodyFrameVelocity
      • navlie.lib.models.CameraProjection
      • navlie.lib.models.DoubleIntegrator
      • navlie.lib.models.DoubleIntegratorWithBias
      • navlie.lib.models.GlobalPosition
      • navlie.lib.models.Gravitometer
      • navlie.lib.models.InvariantMeasurement
      • navlie.lib.models.InvariantPointRelativePosition
      • navlie.lib.models.LinearMeasurement
      • navlie.lib.models.Magnetometer
      • navlie.lib.models.OneDimensionalPositionVelocityRange
      • navlie.lib.models.PointRelativePosition
      • navlie.lib.models.PointRelativePositionSLAM
      • navlie.lib.models.RangePointToAnchor
      • navlie.lib.models.RangePoseToAnchor
      • navlie.lib.models.RangePoseToPose
      • navlie.lib.models.RangeRelativePose
      • navlie.lib.models.RelativeBodyFrameVelocity
      • navlie.lib.models.SingleIntegrator
    • navlie.lib.preintegration
      • navlie.lib.preintegration.AngularVelocityIncrement
      • navlie.lib.preintegration.BodyVelocityIncrement
      • navlie.lib.preintegration.IMUIncrement
      • navlie.lib.preintegration.LinearIncrement
      • navlie.lib.preintegration.PreintegratedAngularVelocity
      • navlie.lib.preintegration.PreintegratedBodyVelocity
      • navlie.lib.preintegration.PreintegratedIMUKinematics
      • navlie.lib.preintegration.PreintegratedLinearModel
      • navlie.lib.preintegration.PreintegratedWheelOdometry
      • navlie.lib.preintegration.RelativeMotionIncrement
      • navlie.lib.preintegration.WheelOdometryIncrement
    • navlie.lib.states
      • navlie.lib.states.MatrixLieGroupState
      • navlie.lib.states.MixtureState
      • navlie.lib.states.SE23State
      • navlie.lib.states.SE2State
      • navlie.lib.states.SE3State
      • navlie.lib.states.SL3State
      • navlie.lib.states.SO2State
      • navlie.lib.states.SO3State
      • navlie.lib.states.StampedValue
      • navlie.lib.states.VectorInput
      • navlie.lib.states.VectorState
  • navlie.bspline
    • navlie.bspline.SE3Bspline
On this page
  • GaussianSumFilter
    • GaussianSumFilter.predict()
    • GaussianSumFilter.correct()
    • GaussianSumFilter.process_model
    • GaussianSumFilter.reject_outliers

navlie.filters.GaussianSumFilter¶

class navlie.filters.GaussianSumFilter(process_model: ProcessModel, reject_outliers=False)¶

Bases: object

On-manifold Gaussian Sum Filter (GSF).

References for the GSF:

D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” in IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 439-448, August 1972.

The GSF involves Gaussian mixtures. Reference for mixing Gaussians on manifolds:

J. Ćesić, I. Marković and I. Petrović, “Mixture Reduction on Matrix Lie Groups,” in IEEE Signal Processing Letters, vol. 24, no. 11, pp. 1719-1723, Nov. 2017, doi: 10.1109/LSP.2017.2723765.

Parameters:
  • process_models (List[ProcessModel]) – process models to be used in the prediction step

  • reject_outliers (bool, optional) – whether to apply the NIS test to measurements, by default False

predict(x: MixtureState, u: Input, dt: float | None = None) → MixtureState¶

Propagates the state forward in time using a process model. The user must provide the current state, input, and time interval

Note

If the time interval dt is not provided in the arguments, it will be taken as the difference between the input stamp and the state stamp.

Parameters:
  • x (MixtureState) – The current states and their associated weights.

  • u (Input) – Input measurement to be given to process model

  • dt (float, optional) – Duration to next time step. If not provided, dt will be calculated with dt = u.stamp - x.state.stamp.

Returns:

New predicted states with associated weights.

Return type:

MixtureState

correct(x: MixtureState, y: Measurement, u: Input) → MixtureState¶

Corrects the state estimate using a measurement. The user must provide the current state and measurement.

Parameters:
  • x (MixtureState) – The current states and their associated weights.

  • y (Measurement) – Measurement to correct the state estimate.

  • u (Input) – Input measurement to be given to process model

Returns:

Corrected states with associated weights.

Return type:

MixtureState

process_model¶
reject_outliers¶

previous

navlie.filters.GaussHermiteKalmanFilter

next

navlie.filters.InteractingModelFilter

© Copyright 2022.

Created using Sphinx 7.1.2.