navlie.filters

Module containing many predict-correct style filters.

Functions

check_outlier(error, covariance)

Performs the Normalized-Innovation-Squared (NIS) test to identify an outlier.

generate_sigmapoints(dof, method)

Generates unit sigma points from three available methods.

mean_state(x_array, weights)

Computes a weighted mean of a list of State instances in an iterated manner, until reaching a maximun number of iterations or a small update.

run_filter(filter, x0, P0, input_data, meas_data)

Executes a predict-correct-style filter given lists of input and measurement data.

run_gsf_filter(filter, x0, input_data, meas_data)

Executes a predict-correct-style filter given lists of input and measurement data.

run_imm_filter(filter, x0, P0, input_data, ...)

Executes an InteractingMultipleModel filter

Classes

CubatureKalmanFilter(process_model[, ...])

param process_model:

process model to be used in the prediction step

ExtendedKalmanFilter(process_model[, ...])

On-manifold nonlinear Kalman filter.

GaussHermiteKalmanFilter(process_model[, ...])

param process_model:

process model to be used in the prediction step

GaussianSumFilter(process_model[, ...])

On-manifold Gaussian Sum Filter (GSF).

InteractingModelFilter(kf_list, ...)

On-manifold Interacting Multiple Model Filter (IMM).

IteratedKalmanFilter(process_model[, ...])

On-manifold iterated extended Kalman filter.

SigmaPointKalmanFilter(process_model[, ...])

On-manifold nonlinear Sigma Point Kalman filter.

UnscentedKalmanFilter(process_model[, ...])

param process_model:

process model to be used in the prediction step